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Abstract
Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH)
state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas
19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same
helicity, and shows that strong magnetic and velocity shears in the structure suppress the
nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation
energies over wavenumber, we reduce the theory to a predator–prey model. The suppression of
the nonlinear interaction is governed by the single helicity energy, which, for fixed radial
structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma
current which, in the theory, sets the shearing threshold for suppression. The model shows a
limit cycle oscillation in which the system toggles between QSH and multiple helicity states,
with the single helicity phase becoming increasingly long-lived relative to the multiple helicity
phase as plasma current increases.
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1. Introduction

In reversed field pinch (RFP) discharges there is normally a
spectrum of tearing mode fluctuations resonant on rational sur-
faces. Innermost resonant modes are unstable; modes resonant
at larger radii are driven nonlinearly by mode coupling with
the unstable modes, producing a cascade. With each ratio-
nal surface characterized by its own helicity, this situation is
referred to as the multiple helicity state. In recent years a sec-
ond fluctuation state has been found for operation at higher
current [1, 2]. In this situation the innermost resonant tearing
mode has an amplitude that significantly exceeds the ampli-
tudes of other helicities, producing a spectrum dominated by a
single helicity. Single and multiple helicity states are not sta-
tionary. Rather, the system toggles between the two states [3].
At higher current the single helicity phase becomes increas-
ingly long relative to the multiple helicity phase. Compar-
isons between RFX and MST RFP devices, which operate with
different plasma currents, temperatures, and densities, have
shown that the transition from a purely multiple helicity state
to the dithering quasi-single helicity (QSH) state occurs in both

devices at approximately the same Lunquist number [4]. The
time-dependent QSH is thus understood to be a high Lundquist
number phenomenon.

Early approaches to understanding the QSH state have
tended to view it as a helical equilibrium embedded in an
axisymmetric plasma. In simulation the situation is generally
found only for low Hartman number, and features a dominant
helicity that does not correspond to a core resonant mode
[5]. Recent magnetohydrodynamic (MHD) simulations of
the transition to this state are reminiscent of the viscous
laminarization of hydrodynamic turbulence for decreasing
Reynolds number, and are not generally compatible with
high Lundquist number conditions [6]. A high Lundquist
number QSH state has been observed in MHD simulations,
but only by externally forcing the plasma with a helical
perturbation at the plasma surface matching the helicity of the
QSH [7]. To overcome the limitations of these approaches in
providing a realistic description of the QSH state it is becoming
increasingly apparent that models that are fundamentally time
dependent are needed.
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One such model treats QSH not as an equilibrium but
as a coherent fluctuation structure that dominates other fluc-
tuations by actively suppressing them through shears in the
magnetic and flow fields of the dominant structure [8]. If the
dominant fluctuation is the innermost resonant tearing mode,
the suppression of other modes also suppresses the mode cou-
pling on which other modes rely for nonlinear drive. This
supports the dominance of the innermost resonant mode and
quenches modes resonant at larger radii. With the mode cou-
pling suppressed the dominant mode suffers virtually no non-
linear interaction, and hence, nonlinear decorrelation. The
innermost mode consequently can become so long lived that
it looks like an equilibrium. Under these circumstances the
shears of the innermost resonant mode suppress any kind of
fluctuation and thereby also establish a transport barrier to heat
and particles. Both the magnetic and flow shears of the dom-
inant mode can participate in the suppression of other modes.
Stable flow shear is understood to suppress fluctuations driven
by other gradients, as it does in the H-mode [9]. Magnetic
shear has a comparable effect on magnetic fluctuations, effec-
tively shearing the phase fronts of Alfvénic fluctuations [10].
The model describing the interaction of a dominant mode and
secondary fluctuations is intrinsically time dependent. Prior
analysis, to describe the physics of the suppression mecha-
nism, assumed situations with steady behavior [8]. This paper
extends analysis to time-dependent situations and addresses
specific features of the QSH state.

Nonlinear time dependent behavior of transitions between
finite-duration quasi stationary states have frequently been
described by reduced models sometimes refereed to as
predator–prey models. Such models have been used to describe
the dynamics of the L–H transition [11], internal transport
barriers [12], internal heating from cold pulse propagation [13],
and other problems. The reduction is designed to remove non
essential complexity while retaining the physics that produces
gross features of the evolution. The dynamics of such models
is more transparent than that of more complete models. If
essential features of the transition phenomenon as observed
in experiment are reproduced by the reduced model, there is
an indication that key processes have been identified. In this
paper we build a set of reduced equations for the coupling of
a dominant fluctuation and secondary modes model based on
the reduced MHD model of Kim and Terry [8]. Analysis of its
time-dependent behavior provides a mechanistic description of
QSH transitions and an explanation for observed experimental
features, the most important being the scaling of the persistence
of the QSH phase with respect to plasma current [3].

2. Suppression of mode coupling by magnetic and
velocity shear

The tearing mode fluctuation has a mode structure with radial
profiles for magnetic field and flow. These have an inner layer
at the resonant magnetic surface but extend globally. The mag-
netic field fluctuation of the innermost resonant tearing mode
extends over most of the minor radius, the flow is more local-
ized. If the shear of these profiles is sufficiently large, it can
suppress other fluctuations, rendering them stable, reducing

amplitudes and the radial overlap required for interaction, or
disrupting the phase required for interaction. Suppression of
turbulence or fluctuations by the stable shear of a mean flow or
zonal flow is well known [9]. Suppression of one fluctuation
by another is also possible by the same mechanism. When it
occurs the suppressing fluctuation is no longer subject to tur-
bulent decorrelation and becomes a long-lived coherent struc-
ture. Such coherent structures are known to occur in decaying
2D Navier–Stokes turbulence [14]. To suppress ambient fluc-
tuations their shear must exceed a threshold. This requires
large amplitude for a given scale size, placing them in the tail
of the probability distribution function [15]. Coherent fila-
ments of current and density can also form at the scales of
kinetic Alfvén wave turbulence in the interstellar medium and
account for scaling features of pulsar scintillation [10]. In that
case magnetic shear in one fluctuation suppresses other mag-
netic fluctuations. The shear threshold for suppression again
places the suppressing fluctuation in the tail of the probability
distribution function.

In the case of coherent vortices in 2D Navier–Stokes turbu-
lence there is no magnetic field; for kinetic Alfvén waves there
is no flow shear. For tearing modes in the RFP, there is both
magnetic field and flow. A minimal description for a reduced
model should incorporate both shears and the nonlinear inter-
action between modes. Reduced MHD is attractive because it
provides a reasonably simple starting point for a problem that
becomes complex because there are two shearing fields and two
fluctuating fields. The dimensionless reduced MHD equations
apply under the assumption of B0(x) = Bzẑ, and are given by

dω

dt
+ ∇||j = 0 , (1a)

dψ

dt
+ ∇||φ = 0. (1b)

Hereω = ∇2
⊥φ is the vorticity, j = ∇2

⊥ψ is the current (defined
in the opposite direction of the true current), and the parallel
and total derivatives are

∇||f = b̂0 · ∇f − [ψ, f ] = ∂f

∂z
− [ψ, f ],

df

dt
= ∂f

∂t
+ [φ, f ],

where [f, g] = 1

r

(
∂f

∂r

∂g

∂θ
− ∂g

∂r

∂f

∂θ

)
.

For cylindrical geometry with the periodicity in the
azimuthal and axial directions, a Fourier expansion gives

f (r, θ, z, t) =
∑
m,k

fmk(r, t) exp i(mθ − kz).

The theory for suppression of secondary magnetic modes
by a dominant mode used reduced MHD [8]. It utilized a
two-time scale analysis to separate secondary modes from the
primary mode. The former evolve on a fast time scale in the
presence of the slowly varying shears of the primary mode. The
latter evolve on the slow scale under the average interaction
with rapidly varying secondary modes. Under the two-time
scale expansion, shearing is expressed as a rate associated with
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the radial derivative of the poloidal flow and magnetic field
fluctuations of the dominant mode. These rates are given by

�′
φ = im

r

∂φ

∂r

∣∣∣∣
n=6

, (2)

�′
ψ = im

r

∂ψ

∂r

∣∣∣∣
n=6

, (3)

where |n=6 is a label intended to identify the dominant mode,
which for concreteness we take to be n = 6. These two shear-
ing rates combine to form a composite shearing rate. The
combination is complex, but if one shear dominates the other
it can be taken to be

�′ = im

r
Max

[
∂φ

∂r

∣∣∣∣
n=6

,
∂ψ

∂r

∣∣∣∣
n=6

]
. (4)

Equation (4) indicates that, in terms of the effect of a dominant
mode on other fluctuations, a single calculation can be carried
out that treats either the effect of flow shear or magnetic shear,
provided one is larger than the other. We pursue this course for
its generality, noting that the results derived below will hold in
either case.

It is nevertheless of interest to know which effect is
stronger. It is known that for shear flow to affect a tearing
mode it must satisfy

v

Lφ

� VA

a
, (5)

where v is the flow speed, VA is the Alfvén velocity, a is the
minor radius and Lφ is the scale length of the shear [16].
While the shear scale length of the fluctuating flow of the
dominant mode is smaller than that of the fluctuating magnetic
field in linear theory, the flow itself is also smaller than VA.
Estimates of these quantities from experimental measurements
suggest the two terms in the inequality (5) could possibly be
comparable, but do not provide sufficient resolution for a firm
determination. As this is a matter of further experimental
measurement, it is outside the scope of the present theoretical
effort.

When the shearing rate is larger than the nonlinear
decorrelation rate, overlapping fluctuations experience a
boundary layer. In the boundary layer, fluctuation amplitudes
are curtailed exponentially. The scale of exponentiation is the
layer width �r . It is governed by a balance of the shearing rate
�′ and the nonlinear decorrelation rate. When shear is strong
the layer width decreases to maintain the balance. The layer
width, which scales like the reduced radial correlation length
of fluctuations in H-mode shear layers, is proportional to the
inverse square root of the shearing rate,

�r =
(

φ

r�′

)1/2

. (6)

The shear of the dominant tearing mode extends globally and
suppresses coupled modes whose outer (ideal) region over-
laps with the shear. (Note that inner layers do not have to

overlap.) It should also be noted that the shear has a sepa-
rate effect on the cross phase of interacting fluctuations, and
strongly suppresses the correlation required for mode inter-
action. This latter effect is typically stronger than the expo-
nential curtailment of amplitudes [17]. However, since most
secondary modes rely on interaction with the dominant mode
for excitation to finite amplitude, it has the effect of strongly
reducing secondary mode level.

The effect of shear is weak unless it exceeds a critical
value. When shear is quantified by its shearing rate the critical
value is the nominal turbulent decorrelation rate. When shear
is quantified by its radial layer width �r the critical value is a
radial fluctuation scale. For tearing modes this is the magnetic
island width

w0 =
√

rqB̃r/mq ′Beq
θ , (7)

where B̃r is the amplitude of the tearing mode and q is the
safety factor. If the QSH state is caused by shear suppression,
it requires

�r

w0
< 1. (8)

Because QSH is triggered somewhere near �r/w0 = 1, its
persistence acquires a dependence on the equilibrium poloidal
field B

eq
θ , or plasma current. This dependence is derived in the

next section.

3. A reduced model for the nonlinear coupling

We derive a predator–prey model from equations (1a) and
(1b), including in each equation the composite shearing rate,
equation (4), and a minimal representation of each nonlinearity,
yielding

γ ω̂m + a�′ω̂m =
∑
m′

im′

r

∂ψ̂m′

∂r
ĵm−m′ , (9)

γ ψ̂m + a�′ψ̂m =
∑
m′

im′

r

∂ψ̂m′

∂r
φ̂m−m′ , (10)

where for shorthand, the mode numbers m and m′ represent
spatial mode number pairs (m, n) and (m′, n′), and imaginary
Fourier frequencies γ and γ ′. The sum over m′ is understood
to include an integral over γ ′; the symbol ˆ signifies a Fourier
transformed quantity. The radial variable is dimensionally
represented by the minor radius a. Evaluating equation (9)
at wavenumber m − m′ and inverting,

φ̂m−m′ =
∑
m′′′

(im′′′/r)(∂ψ̂m′′′/∂r)ψ̂m−m′−m′′′

γ − γ ′ + a�′ . (11)

This result is substituted into equation (10) and the standard
wavenumber selection of statistical closure theory from the
sum over m′′′ is used. The result yields

γ ψ̂m + a�′ψ̂m =
∑
m′

(−m′2/r2)|(∂ψ̂m′/∂r)|2ψ̂m

γ − γ ′ + a�′ . (12)
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We modify this expression to describe the evolution of the
energy-like quantity |ψm|2 by multiplying equation (12) by
ψ−m and adding it to the complex conjugate of equation (12)
multiplied by ψm. The right hand side of equation (12) repre-
sents a turbulent diffusivity. The finite lifetime of fluctuation
correlations that contribute to the diffusivity is represented by
the time scale [γ − γ ′ + a�′]−1. Because the phase averaged
energy |ψm|2 evolves on a slower time scale than the fluctu-
ations that contribute to the diffusivity, the integral over γ ′

can be subjected to the standard Markovian approximation of
closure theory (γ → 0). The result yields

∂|ψ̂m|2
∂t

=
∑
m′

(−m′2/r2)|(∂ψ̂m′/∂r)|2|ψ̂m|2
γ ′ + a�′ , (13)

where we now write |ψ̂m|2 in the time domain. In reaching
this result we have assumed that �′ is imaginary, in keep-
ing with the conservative character of nonlinearity in MHD.
This assumption is consistent with equations (2) and (3) with
∂φ/∂r|n=6 and ∂ψ/∂r|n=6 respectively as binormal compo-
nents of a real flow and magnetic field for the n = 6 mode. As
is standard for energy evolution expressions, the suppressive
effect of shear now resides exclusively in the propagator, which
forms the denominator of the nonlinear term. When shear be-
comes large it reduces the nonlinear strength, suppressing the
coupling of large scale unstable modes to smaller scale modes.
The necessary step of ensuring that the propagator capture the
threshold for shear suppression will be undertaken shortly.

Mode coupling resides in the nonlinearity. When n = 6
or n′ = 6 the fluctuation |ψ |2 corresponds to the dominant
mode. When n or n′ are greater than 6, |ψ |2 corresponds to
a secondary mode. We will truncate the sum over n′ so that
there is a single field D = |ψn=6|2 for the dominant mode and
a single field S = |ψn>6|2 for the secondary modes. The mode
coupling is represented by products of S and D. We consider
the following equations for S and D, representing particular
mode coupling combinations,

∂D

∂t
= QD − (σ1S

2 + σ2SD)

γ ′ + a�′ − αDD, (14)

∂S

∂t
= QS +

(σ ′
2DS + σ ′

1D
2)

γ ′ + a�′ − βS2 − αSS. (15)

The four mode coupling combinations represented by σ1, σ2,
σ ′

1 and σ ′
2 occur in statistical closures as couplings between a

larger and smaller scale fluctuations. The couplings with σ2

and σ ′
2 are referred to as coherent and encompass physical pro-

cesses such as eddy damping and eddy diffusion that depend
on eddy amplitude; those with σ1 and σ ′

1 are incoherent, i.e.,
independent of eddy amplitude. The signs of the coupling
terms produce energy transfer from the dominant mode to sec-
ondary modes, in accordance with the tearing mode cascade.
In addition to the mode coupling, there are external drives QD

and QS , representing the Ohmic free energy. These drives
couple to the equilibrium at the largest scales, and are rep-
resented by external forces. Since the dominant mode is the
primary recipient of the magnetic free energy associated with

the Ohmic drive, QD > QS . The terms with αD and αS repre-
sent resistive dissipation. Because the dominant mode is larger
scale than the secondary modes, αD < αS . With wavenumber
space projected out of this simple representation, dissipation
at small scale and Ohmic drive must be distinguished. We give
the former its proper amplitude-dependent form, and make the
latter an external, amplitude-independent drive. Otherwise the
two processes would be lumped together into a single coef-
ficient. A zero value for this coefficient, consistent with a
steady state, would be indistinguishable from removing these
effects altogether from the model. A positive (negative) value
would be indistinguishable from a weak drive with no damp-
ing (weak damping with no drive). The term β|S|2 represents
mode coupling from larger scale secondary modes to smaller
scale secondary modes, i.e., the forward energy cascade. This
term is present only if S represents a subset of the most promi-
nent secondary modes, in which case it acts as subgrid scale
damping. If it represents all secondary modes, this term would
be absent. Including or dropping this term does not have a large
effect on the time dependent behavior of the model.

The suppression term only becomes important when
equation (8) is satisfied. To make the threshold explicit we
start with equation (4), assuming ∂ψ/∂r > ∂φ/∂r , m = 1,
and r ≈ a. Then

a�′ = dB̃n=6

dr
= B̃n=6

lB
= W 2

0 q ′Beq
θ

lBrq
= W 2

0

�r2

�r2q ′Beq
θ

lBrq
,

(16)

where we have expressed the amplitude of the dominant mode
in terms of its island width using equation (7). When the shear-
suppression threshold is exceeded, W 2

0 /�r2 = (D/D0)
1/2 >

1, where D0 is the dominant mode amplitude squared at the
suppression threshold. Therefore the shearing factor can be
written

γ + a�′ = 1 +
( D

D0

)1/2(B
eq
θ

Bθ0

)(�r

lB

)2( lB

a

)(a2q ′

rq

)
, (17)

where Bθ0 is the threshold value for the equilibrium poloidal
field (or equivalently, plasma current) at which the QSH state
first appears. With all quantities referenced to threshold values,
the appropriate offset for the shearing factor is 1, as expressed
in equation (17). For compactness, we write

γ + a�′ = 1 + ε
( D

D0

)1/2
. (18)

The quantity ε = B
eq
θ (�r)2aq ′/Bθ0 lBrq is small because

while B
eq
θ /Bθ0 might be somewhat larger than unity for present

day RFPs, a2q ′/rq is order unity, and (�r/lB)2(lB/a) is quite
small. With ε small, the ratio of D to its nominal threshold D0

is large. Since ε(D/D0)
1/2 is the suppression factor, we see

that suppression is favored by large B
eq
θ .

With this result we write the predator–prey model as

∂D

∂t
= QD − (σ1S

2 + σ2SD)

1 + ε(D/D0)1/2
− αDD, (19)

∂S

∂t
= QS +

(σ ′
2DS + σ ′

1D
2)

1 + ε(D/D0)1/2
− βS2 − αSS. (20)
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Figure 1. Temporal behavior of a limit-cycle state showing a QSH
state that intermittently returns to a multiple helicity state. The blue
trace is |D| and the green trace is S.

Although this model is derived from MHD, it has significant
limitations. While it is designed to capture temporal dynamics
associated with the competition between nonlinear energy
transfer and suppression by shear, in other matters it is not
realistic. For example, energy is not conserved, including
by the nonlinearity. Consequently no absolute scale can be
attached to the amplitude D and S, nor is it guaranteed that their
values are always positive. Improving the realism of the model
and its relation to experiment will require treatment of m = 0
modes. This qualitative change in approach is outside the scope
of the present study but will be considered in the future.

4. Time-dependent behavior

We consider solutions of equations (19) and (20). Consistent
with these types of models, different parameter values lead
to solutions with fixed points or limit cycles. For example,
if σ1 = σ ′

2 = 0 there are decaying relaxation oscillations en
route to a fixed point solution. For σ2 = σ ′

1 = 0 there is a limit
cycle. The limit cycle is sensitive to the value of ε in a way
that is consistent with suppression, as shown below. Changing
values of drive, resistive dissipation and β does not tend to
introduce qualitative changes, provided the drive is sufficient
to maintain the limit in the presence of dissipative losses.

Figure 1 shows a limit cycle solution with σ2 = σ ′
1 = 0.

The time traces are typical of predator–prey dynamics. A prey
field (blue) is depleted by feeding the predator (green). The
predator crashes once its source is depleted, allowing the prey
to reemerge under its external drive and the weakened predator.
The cycle repeats. The secondary modes (green) are smaller
in amplitude because their dissipation is stronger and their
external drive is weaker. The rise of D is more gradual than
its depletion because the former is linear while the latter is
nonlinear. When D � S, e.g., between t = 12.2 and t = 13.4,
the system is in the QSH state. Otherwise it is in the multiple
helicity state.

Suppression by shear is active throughout the limit cycle,
but not in a conspicuous way. It is not directly involved
in triggers that initiate the depletion of D, or its subsequent
recovery. Rather, when it is strong enough to have an effect,

Figure 2. Percent of time the system is in the QSH state with
D � S as a function of the shearing coefficient ε. At 0% and 100%
the system transitions to fixed point behavior.

its suppression of the nonlinear interaction simply allows D

to survive longer before succumbing to S. To see the role of
suppression we must vary ε/D

1/2
0 and measure the length of

the QSH phase. Physically, this variation could be achieved
by varying B

eq
θ , or equivalently, by varying the plasma current,

and observing the percent of time in the QSH phase relative
to the multiple helicity phase. The results of this variation
are shown in figure 2. It is observed that the QSH time per-
centage varies from 0 to 100 as the suppression coefficient is
increased. The corresponding variation of ε/D

1/2
0 from order

unity to ∼40 represents the suppression strength required to go
from no effect on the predator–prey cycle to complete elimina-
tion of the cycle by inhibiting the interaction. This plot, which
is the central result of this paper, demonstrates that the com-
posite shearing effect of equation (4) is capable of moderating
limit cycle behavior between QSH and multiple helicity states,
and that it evinces a scaling with plasma current or poloidal
field that is consistent with experiment.

The endpoints of the QSH percent time variation represent
transitions from limit cycle behavior to fixed point behavior.
At the 100% level, the system locks into a state in which the
amplitudes of D and S are steady with D � S. A time history
plot for this type of behavior is shown in figure 3. Even though
the system is permanently in the QSH state, nonlinear transfer
from the dominant mode to secondary modes is not zero, as
indicated by the finite level of S. If ε is further increased, the
amplitude of S becomes smaller until it reaches zero. This
state is a resistive single helicity state with negligible nonlin-
ear activity. Its appearance here is enabled by the form of the
nonlinear transfer, which itself vanishes as S → 0. The non-
linear transfer of a parametric instability process, wherein two
wavenumbers of a large amplitude mode pump small ampli-
tude modes could maintain the QSH limit cycle. However, if
there is a single mode number n = 6 for the dominant mode,
the parametric process is not possible.

When the QSH percent time is zero the system is in a
state with S > D. A time history for this situation is given in
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Figure 3. Time history of the system for the fixed point that occurs
when the QSH persistence reaches 100%. The blue trace is D and
the green trace is S.
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Figure 4. Time history of the system for the fixed point that occurs
when the QSH persistence reaches 0%. The blue trace is D and the
green trace is S.

figure 4. There is a very slow relaxation oscillation towards an
asymptotic steady state with S slightly larger than D.

The nonlinear coupling explored in figures 1–4 couples
fluctuations of different scales in ways that are generally
consistent with MHD. However, any exercise in a more
direct matching of model couplings to experiment immediately
reveals shortcomings that should be addressed. For example,
including m �= 1 modes (e.g., m = 0), which are necessary to
couple toroidal modes with m = 1, would capture an important
aspect of mode coupling as it is understood from experiment
and allow a realistic description of energy conservation. This
approach, which enlarges the model to three fields, will be
explored in future work.

5. Analysis

It is possible to determine the effects that dominate at various
times during the evolution of the limit cycle shown in figure 1
by examining the magnitude of the terms in equations (19) and
(20). These times correspond to three transition points and
two time ranges. The points are the times when S transitions
from growth to decay and D comes into parity with S, when D

begins a phase of steep rise, and when the rise of D saturates.
The time ranges correspond to the decay of D and growth of S,

and the steep rise of D. This analysis essentially explains the
interaction of the various terms in the model and informs the
question of whether modifications of its makeup are desirable
to better replicate behavior observed in experiment. While
modifications could improve the model, this analysis supports
the conclusion that the effect of shear, drive and dissipation,
and nonlinear transfer between fluctuations, support a limit
cycle oscillation with growing QSH persistence as B

eq
θ rises.

We consider first the time range in which S is growing and
D is large. The growth of S is caused primarily by nonlinear
transfer between the dominant and secondary modes. This
transfer slows the growth of D before its maximum near t =
13, and then causes a rapid decay. Because of resistive losses
and transfer to high n in the S equation, the growth of S is not as
fast as the loss of D. However, because S is growing, nonlinear
transfer and the small drive QS are larger than the dissipative
terms representing transfer to high n and resistive decay.

At a critical time just before t = 13.8, D drops below a
level necessary for the nonlinear transfer into S to overcome
transfer to high n and resistive damping. From equation (20)
the nonlinear transfer is given by σ ′

2DS/[1 + ε(D/D0)
1/2].

The transition is triggered by the relative smallness of D in
the numerator. At this transition time S abruptly changes from
growth to decay. Shearing is not a key effect here—the system
is in a multiple helicity phase.

At a second critical time before t = 14.8, D initiates
a sharp rise triggered by the smallness of S, which in turn
reduces nonlinear transfer out of D. The nonlinear transfer rate
from D, which equation (19) gives as −σ1S

2/[1+ε(D/D0)
1/2]

drops below a level for which it can balance the Ohmic drive,
initiating the rise. This effect is governed by the factor S1/2 in
the denominator of the transfer rate. At the transition, shear
is not a player, because the level of D is similar to its level
at t = 13.8, where the system is in a multiple helicity
state. However, the rise of D is sufficiently rapid that shear
suppression quickly comes into play. Around t = 15, S begins
to grow because the nonlinear transfer rate into S is rapidly
rising with D, and transfer to high n, which goes like βS2,
is weaker for S small. The growth remains slow even as D

becomes large because shearing comes into play and limits the
transfer rate.

The steep rise of D saturates and begins a slow decline at
a third critical time around t = 16.1. This transition occurs
because the Ohmic drive is independent of D while the resistive
decay αDD is proportional to D. At a critical value of D

resistive decay overcomes the drive. Nonlinear transfer also
helps saturate the growth of D, but the transfer is significantly
slowed by shearing.

From the above analysis we conclude that shearing is not
a player in the sudden transitions of this model. Its role is to set
the duration of the time range in which D is large, which consti-
tutes the QSH state. This analysis fully supports the behavior
of figure 2, which shows that QSH persistence is proportional
to the strength of shearing. The transition triggers are sensi-
tive to the form of the nonlinearities, and could change if other
forms for the coupling are used. However, all nonlinearities
involving the coupling between the dominant and secondary
helicities will involve a suppression factor, and its form will
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be that given by equation (18). Therefore, because suppres-
sion is strong when D is large, the persistence of QSH with
shearing strength will not be altered by changes in the form of
nonlinear coupling. Consequently, the effect of shear on the
establishment of QSH, which was demonstrated in [8], and its
effect on the duration of limit cycle oscillations between QSH
and multiple helicity states, are robust aspects of the theory.

6. Conclusions

While early theoretical and numerical work has fostered a
tendency to view the QSH state as a helical equilibrium,
experimental observations of dithering between QSH and
multiple helicity states, and the tendency of high current
operation to favor QSH, have undermined the credibility of an
equilibrium paradigm. In this paper we have shown that both
of these key experimental observations follow naturally from
a picture of QSH in which the coupling between the innermost
resonant tearing mode and secondary tearing modes, which
strongly rely on nonlinear transfer for excitation, is suppressed
by the shears of magnetic field and flow of the innermost
mode. That shears of magnetic field and flow associated with
one fluctuation structure can suppress coupling with other
fluctuations has been established previously. Here we have
shown that this effect is fully compatible with limit cycle
behavior that toggles between states where the innermost mode
strongly dominates all others by virtue of shear suppression
and ones where all modes interact, with shearing too weak to
suppress the interaction. Importantly, the suppression model
shows that large equilibrium poloidal field is conducive to a
stronger shearing effect, and that this behavior leads to stronger
QSH persistence as the equilibrium field is increased through
stronger Ohmic drive.

These conclusions have been established through a time-
dependent model based on reduced MHD. In this model the
dominant and secondary modes are described by single fields
in a set of predator–prey equations. The triggers for the tran-
sitions that occur between QSH and multiple helicity phases

are set by the nonlinear coupling. However, the duration of the
QSH phase is governed by the strength of shearing. The form
of the suppression factor is derived from standard statistical
closure theory. It enters as a linear shearing rate in the turbulent
decorrelation time and is consequently independent of the form
of the nonlinear coupling. The general conclusions drawn from
the model thus transcend its least robust details and support the
notion that the QSH state represents a suppression of nonlinear
energy exchanges between dominant and secondary modes by
magnetic and flow shear.
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